EFFECTS OF PRE-TRAINING IN NON-NOISY ENVIRONMENT FOR
BEHAVIOR CLONING USING FETCH ROBOT PICK AND PLACE
TASK

Batuhan Altundas, Yuuna Hoshi, Reagan Kan and Marcus McGuire
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332
(baltundas3, yhoshi3, rkan3, mmcguire31)@gatech.edu

April 30, 2021

ABSTRACT

It is safer, more efficient and cheaper to train robots in simulations before deploying them into a real
world environments. In most cases in industrial applications, Reinforcement Learning Algorithms are
used in simulation because roll-outs in simulation are cheap, while Learning from Demonstration
Algorithms are used in real-world because roll-outs in real-world are expensive. This method however
does not allow for non-expert users to train robots to execute custom tasks, limiting accessibility to
robots. In this project, we examine the potential use of Behavior Cloning on a simulated environment
as pre-training a model before training in a more complex simulated environment again using Behavior
Cloning, showing a reduction of the training time and improvement on performance in a complex
simulated environment after pre-training in a simple simulated environment with the purpose of
applying the same principles of pre-training to deploying robots Real World Environments.

Keywords Pre-training - Behavior Cloning - Learning from Demonstration

1 Introduction

A fundamental challenge in the field of robotics is the access to physical robots. It is often much easier and cheaper
to get access to Simulation Environments and testing new applications in virtual environments before calibrating the
trained tasks for Real World Environments. The Simulated Environment is often simplified version of the Real World
Environment, lacking the noise generated from a more complex world space along with often incalculable minor
deviations from the wear and tear on the robot to manufacturing errors that provide error between what is and what is
expected.

Current Approach to training robots is to use Reinforcement Learning in the simulation environment, followed by
an Learning from Demonstration(LfD) model in the real environment. This is done because it is cheap to train in
the Simulated Environment, allowing for Reinforcement Learning to leverage a greater number of trials to reach an
optimum policy. The produced policy is than calibrated for Real World through an LfD Algorithm. However, this
method requires access to an expert to train the Reinforcement Learning Policy in the Simulated World, making it hard
for non-experts to safely add new tasks to the Robots, limiting wide range accessibility of robots that would lead to a
rapid growth of the field.

While humans can also learn through experience in a method similar to Reinforcement Learning, they are far more
effective in learning how to perform tasks via imitation: they observe others perform a task, and then very quickly infer
the appropriate actions to take based on their observations [1]. Learning from Demonstration Algorithms are derived
from the way humans learn by observing actions of others. Compared to Reinforcement Learning, LfD Algorithms are
easier to use by a broader range of expertise levels. Therefore, using an LfD Algorithm in both stages of simulation and
real world would allow any user to train complex tasks in a safe, inexpensive and efficient way. Having access to a

A PREPRINT - APRIL 30, 2021

simulation environment to speed up training also increases the opportunities to train new tasks for the robots compared
to simply using real world to train them from scratch.

Behavior Cloning (BC) is a simple LfD Algorithm capable of operate both in the absence of demonstrator action
information and while requiring no or very few post-demonstration environment interactions [[1[]. While Behavior
Cloning is capable of imitating the demonstrator with little to no additional interactions after providing the demonstration,
this also leaves BC to be vulnerable to any suboptimalities in the demonstrations. The need for few post-demonstration
interactions allows Behavior Cloning to be used in simple yet repetitive tasks while also being highly dependent on
demonstrations has influenced us in choosing Behavior Cloning for our project.

Our project is to explore the effects of pre-training in a non-noisy environment. The algorithm we used is Behavior
Cloning, and our task is a Pick and Place task using the Fetch robot.

2 Experiment

We used OpenAl Gym Environment for simulated environments, specifically the FetchPickAndPlace Task. The reason
for choosing this specific task was due Fetch Robot is designed for commercial use, therefore accessibility to the robot
is greater than any other robot while Pick and Place Tasks were chosen due to being a common task that has sparse
reward space that make Reinforcement Learning inefficient. Moreover, OpenAl Fetch Simulation Environment allows
for high levels of customizability and documentation needed to created our own more complex environments.

2.1 Environment

Our Experiments were conducted on the Pick and Place Task using the Fetch robot from OpenAl Gym. The Fetch robot
uses the MuJoCo Physics Engine to simulate a robot arm with a gripper at the end of the arm, as well a cube that can be
manipulated by the gripper.

The environment allows agents to sample an observation at each time step. This observation consists of the location
of the midpoint of the gripper in 3D space, the location of the cube in 3D space, the location of the cube relative to
the gripper, the distance between each end of the gripper, the rotation of the cube, and the velocities of gripper and
box. Each observation also has a section for the achieved goal and the desired goal. In the pick and place task, the
achieved goal is the location of the gripper and the desired goal is either the location of the block or the final goal
location, depending on the state of the task [3]].

When interacting with the simulation, the environment takes in a 4 dimensional action vector as input at each time step.
The first three dimensions correspond to the desired 3-dimensional movement in the X,Y,Z axes of the gripper, and the
last dimension corresponds to the relative movement the gripper paddles controlling the grasping action. A negative
value in the forth dimension represents an action to close the gripper and a positive value represents an action to open
the gripper.

wr

Figure 1: View of the FetchPickAndPlace Simulation Environment [9]

A PREPRINT - APRIL 30, 2021

2.2 Task Description and data collection

The FetchPickAndPlace environment randomly places a soft cube and a target during initialization. The cube is always
placed on a table in front of the Fetch Robot, and the target is always some location above the table. The Task is to pick
up this cube using the gripper located at the end of the Fetch arm, and place it at the target. The nature of this Task
allowed us to split it into two smaller tasks that are far more effectively learned through Behavior Cloning: picking up
the object, and placing the object at the target.

The tests and training were completed with the initial position of the gripper as constant while the starting position of
the object and the target position are initialized randomly between different instances.

Task 1: Picking up the Object This task consists of moving the gripper from the starting position of the gripper to
the starting location of the object.

Task 2: Place Object This task is the remaining part of the total task, which is to grip the object, and carry it to the
target.

Data Collection In order to collect trajectory data, we combined the OpenAl Gym Environment with a Python library
to monitor keyboard input to allow users to control the Fetch robot in the simulated environment with simple keyboard
inputs. We collected trajectories from both the simulation environment and in the complex simulation environment.

2.2.1 Interference

Interference layers were added to create a complex, noisy environment that emulates the real world. These interference
layers were created to model common interference that happens in a physical robotic environment, but is not often
included in simulations. There were three types of interference layers that were created.

* Gaussian Sensor Noise Layer - This layer is designed to mimic the imperfections of sensing technology. Real
life robots often do not have the ability to perfectly determine their exact location because sensing technology
is not precise enough to be noise-free. The Gaussian Sensor Noise layer occurs after the environment is
sampled, but before the observation is given to the policy. This layer creates a vector of Gaussian noise with a
mean of 0 and a standard deviation of .015 and adds this vector to the observation. This creates an environment
observation that that is close to the true observation but off by some small random amount in each dimension.

* Gaussian Action Noise Layer - This layer is designed to mimic the imperfection of robotic control technology.
Robotic movement is often not consistent and precise enough to be controlled as directly as developers can do
in simulations. Instead, there are slight variations to movement that may come from inconsistent power output,
mechanical imperfections, or some other source. This is one of two action interference layers that can occur in
the complex environment. The action interference layers occur after the policy has determined an action, but
before the action is carried out in the environment. Like the Gaussian Sensor Noise Layer, this layer creates a
vector of Gaussian noise to serve as interference. However, this layer generates the noise with a mean of 0 and
a standard deviation of 0.1. This noise is added to the action vector to create a new, distorted action, that is
then sent to the environment to be carried out.

» Action Speed Noise Layer - This is the second of the two action interference layers. Like the other action
interference layer, this layer takes the output of a policy and creates a distorted version that is used in the next
simulation step. This layer also generates Gaussian noise with mean of 0 and standard deviation of 0.1, but
this layer only adds the noise to the nonzero dimensions of the action vector. This changes only the speed that
the gripper head moves, and thus the distance that is moved in the current simulation time step. This layer
is meant to be a counterpart to the Gaussian Action Noise Layer, because that layer creates a distortion that
changes the action vector in each dimension. This means that the robot gripper will move drift in directions
other than the intended direction. Both types of interference are common in the real world, but the mechanical
construction of the robot will determine which happens. The Action Speed type of interference will often
happen for robots who have separate motors controlling each dimension’s movement, while the Gaussian
Action type of interference will often happen for robots that have more complex kinematics.

While other interference methods were discussed, such as limitations to the joint angles of the robot, the MuJoCo
Physics Environment handles the Inverse Kinematics functions internally where we were unable to access to modify.

The standard deviation parameters for the Gaussian noise generation were set at the highest value that still allowed
demonstrations to reliable complete the task. At lower values, there would be less noise and the original pre-training

A PREPRINT - APRIL 30, 2021

Training Pipeline

| Complexity Increases >

Simulated World Pretrained Model Complex World Real World
Simulation
Pretraining Complex World
Training
User

Figure 2: Training Pipeline

would be more effective. At higher values, demonstrators would not be able to complete the task reliably and no
behavioral cloning method would lead to a successful policy.

Action Interference
Layer

Sensory Interference

Environment = Layer

T

2.3 Policy

—> Puolicy |

As previously mentioned, we use a Behavior Cloning policy, which is represented by a neural network with ReLU
activation functions and a single hidden layer of 16 nodes. The policies are trained to minimize Cross Entropy Loss
using an Adam optimizer with 0.01 learning rate.

We train a separate policy for Task 1 and Task 2. During inference, the robot follows Policy 1 until the gripper grasps
the object when it switches to Policy 2.

2.4 Experiments

We perform 3 experiments, one for each of the interference layers. Before the experiments, we train behavioral cloning
policies in the non-noisy environment for tasks 1 and 2 using 50 demonstrations. Because Task 2 is simple and the
policy can easily recover from failure, the original task 2 policy works in all experiment setups and is not retrained.

In each experiment, the corresponding interference layer was added to the environment. We collected 50 demonstrations
in the noisy environment. Afterwards, we trained 3 behavioral cloning models from scratch with a random initialization
using 50, 25, and 10 demonstrations. We also trained another set of 3 behavioral cloning models with 50, 25, and 10
complex environment demonstrations, but those models started off using the weights from the models trained in the
simple environment model.

A PREPRINT - APRIL 30, 2021

Policy1619755575 Policy1619755364

16
14
1.2 6

"
2
1.0 3

Loss

0.8

0.6

0.4 -

T T T T T T T T
10 15 20 25 10 15 20 25
Epochs Epochs

=}
v
=}
v

Figure 3: Sensor Noise Interference 10 Demonstrations in the Noisy Sensor Environment.

Policy1619760421 Policy1619755138
1.2 54
1.0 4 4
0.8 1
g g7
2 E|
0.6 4
2
0.4 1
14
0.2 4
0 5 1‘0 £5 2‘0 2‘5 o 5 1‘0 1‘5 Z‘D 2‘5
Epochs Epochs

Figure 4: Sensor Noise Interference 25 Demonstrations in the Noisy Sensor Environment. No pretraining (Left),
Pretraining (Right).

2.5 Results

Overall, demonstrations in a Simulated Environment are easier to produce than in a Noisy Environment. Training in
Simulated Environment followed by training in the Noisy Environment provides better results than training from scratch
in the Noisy Environment. Learning is far more sensitive to Sensor Noise than Actuator Noise.

To evaluate our results, we define a successful policy as a policy that is able to complete the task 80 percent of the time.
Because of the nature of the task, there are few policies that are able to complete the task between 1% and 80% of the
time. Most policies either fail at the task almost every time, or succeed almost every time.

Sensor Noise In the sensor noise experiment, we found that neither the pre-trained nor the from-scratch model were
able to produce a successful policy with 10 demonstrations. After 25 and 50 demonstrations, both were able to produce
a successful policy. We also find that the pre-trained model converges faster than the from-scratch model, but ends with
a higher loss on average than the from-scratch model.

Actuator Noise In the experiment with the Gaussian Action Noise Layer, we found that the pre-trained model was
able to produce a successful policy after only 10 demonstrations in the complex environment. The from-scratch model
did not produce a successful policy until it was trained with 25 demonstrations. The pre-trained model converges in few
epochs than the from-scratch model, on average, and ends with a lower total loss.

A PREPRINT - APRIL 30, 2021

Policy1619746901 Policy1619746625

2.02

3.0

2.00 4

1.98 1

1.96

1941

Loss

1.92 4

1.90 104

0.5 4
1.86

T T T
20 25 30

=}
w
=
5]
=
T}

T T T T T T T
0 5 10 15 20 25 30
Epochs

Figure 5: Task 1 Loss Without Pre-training vs With Pre-training

Policy1619747633 Policy1619747427

1751
0.25

1.50 1

1.25 1 0.20

Loss
Loss

0.15 4
0.75

0.50
0.10 4

0.251

0.00

T T T
20 25 30

o
w
=
o
=
w

T T T T T T T
] 5 10 15 20 25 30
Epochs

Figure 6: Task 2 Loss Without Pre-training vs With Pre-training

Speed Interference In the Speed Interference experiment, we found that the pre-trained model was able to produce
a successful policy after 10 demonstrations in the complex environment, while the from-scratch model required 25
demonstrations. In the expiriment setup, the pre-trained model converged in fewer epochs than the from-scratch model,
and ended with a lower total loss.

3 Discussion

According to our results, as see in the graphs in Figures 3] [[5] [6] [7] and [8] as well as in Table [T} pre-training in a
non-noisy environment produces performance that is significantly improved compared to models generated without

10 Demos 25 Demos 50 Demos
Pretrained Policy with Gaussian Action Interference Successful Successful Successful
From-Scratch Policy with Gaussian Action Interference | Unsuccessful | Unsuccessful | Successful
Pretrained Policy with Gaussian Sensor Interference Unsuccessful | Successful Successful
From-Scratch Policy with Gaussian Sensor Interference | Unsuccessful | Successful Successful
Pretrained Policy with Action Speed Interference Successful Successful Successful
From-Scratch Policy with Action Speed Interference Unsuccessful | Successful Successful

Table 1: Summary of Demonstrations Required to Produce a Successful Policy in Each Experiment.

A PREPRINT - APRIL 30, 2021

Policy1619745940 Policy1619745740
2.0 4 2.5
1.8 4
2.0 A
164
w14 . 15
g g
124
1.0+
1.0 4
0.5 1
0.8 4
0 5 10 £5 2‘0 2‘5 36 0 5 lIU ll5 Z‘U 25
Epochs Epochs

Figure 7: Actuator Noise Interference 10 Demonstrations in the Noisy Sensor Environment. No pretraining (Left),
Pretraining (Right).

Policy1619760591 Policy1619745658

1.8 4
1.4+

1.6
124

144
1.04

1.24 w

Loss

Los:
o
o

1.0 4
0.6

0.8
0.4 1
0.6
0.2

o
w
=
o
=
w
N
1=
N}
w
o
w
=
o
=
@«
~
o
~
u

Epochs Epochs

Figure 8: Actuator Noise Interference 25 Demonstrations in the Noisy Sensor Environment. No pretraining (Left),
Pretraining (Right).

pre-training. We have observed that performance of pre-trained models that use 10 demonstrations in the complex
environment still outperform models that are not pre-trained but are trained with 25 Demonstrations in the complex
environment.

3.1 Limitations

While our study examined three distinct types of interference that modeled noise in the real world, all types assumed a
Gaussian noise distribution. This is certainly not true for all situations.

It is also important to mention that this project was conducted entirely in the Fetch PickAndPlace environment. The
results found in the project may not generalize to all other environments. In particular, the fetch environment is not
dependent on time or past actions. For environments where this temporal independence assumption is not true, the
results of this project likely do not apply.

3.2 Future Work

While gathering human demonstrations, using keyboard input provided some challenge and had a learning curve, as the
user would have to memorize which keys mapped to which movement. For future work, a more intuitive approach such
as a 3D mouse may prove to be more efficient.

A PREPRINT - APRIL 30, 2021

Due to only having access to the simulated environment and the lack of access to a Fetch Robot to test our work on
Real World Environment, following research will involve testing our work on a Fetch Robot in real life. This will likely
give more insights on differences between a real life robot and the OpenAl simulation, giving opportunities to improve
our noise models.

Another direction to explore is to apply the reverse of the principles explored in this work, by adding a filter to a Noisy
Environment to create a Simplified Environment that could then be used for pre-training. A successful noise filter would
remove unrelated noise from the Noisy Environment while keeping the important characteristics, and therefore provide
a better pre-training environment compared to a complete environment.

4 Conclusion

We identified a potential limitation for the accessibility of robots and the training of robots for new tasks. We showed
that in practice, pre-training in a non-noisy simulation environment improves the performance of a new learned task
in the noisy environment, requiring less demonstrations in the complex environment to achieve equal and greater
performance to a model trained in the complex environment with more demonstrations.

Source Code for this paper can be found in https://github.gatech.edu/baltundas3/cs7648_project.git

Acknowledgements

This work is done as part of CS7648 Interactive Robot Learning Course in Georgia Institute of Technology. We would
like to thank Matthew Gombolay, Andrew Silva, Letian Chen and Zheyuan Wang for their help.

References

[1] Faraz Torabi and Garrett Warnell and Peter Stone, Behavioral Cloning from Observation, CoRR, abs/1805.01954,
2018.

[2] Sun, W., Venkatraman, A. and Gordon, G. J. and Boots, B. and Bagnell, J. A. Deeply AggreVaTeD: Differentiable
Imitation Learning for Sequential Prediction. In International Conference on Machine Learning (pp. 3309-3318),
2017.

[3] Raghav Nagpal and Achyuthan Unni Krishnan and Hanshen Yu, Reward Engineering for Object Pick and Place
Training, arXiv:2001.03792, 2020.

[4] Marcin Andrychowicz and Filip Wolski and Alex Ray and Jonas Schneider and Rachel Fong and Peter Welinder
and Bob McGrew and Josh Tobin and Pieter Abbeel and Wojciech Zaremba, Hindsight Experience Replay,
arXiv:1707.01495, 2018.

[5] Matthias Plappert and Marcin Andrychowicz and Alex Ray and Bob McGrew and Bowen Baker and Glenn Powell
and Jonas Schneider and Josh Tobin and Maciek Chociej and Peter Welinder and Vikash Kumar and Wojciech
Zaremba, Multi-Goal Reinforcement Learning: Challenging Robotics Environments and Request for Research,
arXiv:1802.09464, 2018.

[6] Brian D. Ziebart and Andrew Maas and J. Andrew Bagnell and Anind K. Dey, Maximum Entropy Inverse
Reinforcement Learning, Proc. AAAI p.1433-1438, 2008

[7] Schrum, M.L. and Gombolay, M.C. When Your Robot Breaks: Active Learning During Plant Failure, IEEE
Robotics and Automation Letters, pp.438-445, doi:10.1109/LRA.2019.2961598, 2020.

[8] Matthew Alger. Inverse Reinforcement Learning. doi:10.5281/zenodo.555999, 2016.
[9] OpenAl, Fetch PickAndPlace, https://gym.openai.com/envs/FetchPickAndPlace-v0/, 2020.

https://github.gatech.edu/baltundas3/cs7648_project.git

	Introduction
	Experiment
	Environment
	Task Description and data collection
	Interference

	Policy
	Experiments
	Results

	Discussion
	Limitations
	Future Work

	Conclusion

