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Introduction   

In   the   field   of   Artificial   Intelligence   and   specifically   in   Robotics,   task   decisions   are   made   based   
on   some   Utility   Function,   which   provides   a   reward   for   each   action   that   a   robot   can   choose   from.   
But   what   if   the   instructor   does   not   know   about   the   rewards?   What   if   the   user   does   not   know   
about   how   to   provide   an   effective   Reward   Function?   Or,   what   if   the   user   is   working   on   a   field   
that   is   not   related   to   Robotics   but   they   want   to   use   robots   to   help   their   work?   The   solution   for   the   
lack   of   a   Reward   Function   is   to   create   a   system   that   can   draw   out   its   own   rewards   for   each   action   
based   on   a   few   demonstrations   of   what   the   robot   is   meant   to   do,   provided   by   the   user.   Therefore   
the   main   challenge   is   to   have   a   model   that   can   use   Demonstrations   provided   by   users   with   
different   backgrounds,   extract   the   Reward   Functions   automatically   and   achieve   high   
performance   without   relying   on   the   niche   set   of   skills   that   are   required   to   program   the   robots.   
Inverse   Reinforcement   Learning   aims   to   allow   greater   accessibility   of    Robots   to   humans   as   a   
whole,   instead   of   the   limited   environment   of   Robotics   Labs.   

Inverse   Reinforcement   Learning   (IRL)   automates   the   learning   of   the   rewards   used   in   
Reinforcement   Learning.   In   reinforcement   learning,   the   reward   function   is   defined   along   with   the   
state   and   actions   the   agent   can   take,   and   the   agent   learns   to   maximize   this   reward   function.   
However,   modeling   this   reward   function   can   be   difficult   in   many   situations   as   the   rules   are   not   so   
defined.   For   example,   even   though   many   people   know   how   to   drive   a   car,   explicitly   formulating   
this   as   a   reward   function   to   maximize   is   not   feasible.   There   are   many   factors   to   consider   such   as   
traffic   rules,   what   to   do   when   pedestrians   are   approaching,   and   when   and   how   to   change   lanes.   
Inverse   reinforcement   learning   tries   to   derive   an   unknown   reward   function   from   observing   expert   
behavior.   The   assumption   for   IRL   is   that   expert   demonstrators   are   trying   to   maximize   some   
underlying   reward   function   and   it   is   possible   for   the   robot   to   learn   from   provided   
demonstrations,   extracting   the   rewards   automatically   instead   of   requiring   some   unknown   reward   
function,   making   Inverse   Reinforcement   Learning   more   versatile   than   Reinforcement   Learning.     

This   Blog   is   intended   as   an   introduction   to   Inverse   Reinforcement   Learning,   its   origins   and   uses   
by   presenting   three   primary   forms   of   IRL,   Maximum   Margin   IRL   (Abbel   et.   al.   2004),   
Maximum   Entropy   IRL   (Ziebart   et.   al.   2008)   and   Bayesian   IRL   (Ramachandran   et.   al.   2009).   
The   contents   are   divided   into   the   following   sections:   

1) Related   Works   and   Topics   
2) Methods   
3) Evaluation   
4) Conclusion   



  

1. Related   Works   and   Topics   
Inverse   Reinforcement   Learning   builds   on   Reinforcement   Learning   and   Markov   Decision   
processes.   The   main   purpose   of   this   method   is   to   automate   the   Reward   Function   
generation.   The   problem   of   inverse   reinforcement   learning   (IRL)   was   first   defined   as   the   
following   problem:   

- Given   the   measurements   of   an   agent’s   behavior,   its   sensory   inputs,   and   the   
environment   model,   determine   the   reward   function   that   the   agent   is   trying   to   
optimize   (Russel,   1998).   

This   work   later   led   to   the   creation   of   three   primary   forms   of   IRL,   Maximum   Margin   IRL   
(Abbel   et.   al.   2004),   Maximum   Entropy   IRL   (Ziebart   et.   al.   2008)   and   Bayesian   IRL   
(Ramachandran   et.   al.   2009).   

2. Method   

A   Brief   Introduction   to   MDP   (Gombolay   and   Tambwekar,   2021)   
Inverse   Reinforcement   Learning   is   derived   from   Reinforcement   Learning,   which   is   
described   in   a   Markov   Decision   Process   (MDP)   Environment.   The   MDP   Environment   is   
made   up   of   5   concepts:   

1.   States :   A    state ,   ,   is   any   predefined   momentary   instance   in   the   world   that   an  s  
agent   can   exist   in.   For   the   rest   of   this   post,   we   will   use   the   variable     to   represent  S  
the   set   of   all   possible   states   in   the   world   with     referring   to   an   individual   s ∈ S  
state.   

2. Actions :   An    action ,   ,   is   an   event   facilitated   by   the   agent   that   can   transition   you  a  
from   one   state   to   another   provided   that   such   a   transition   is   possible   MDP.   We   will   
use   to   represent   the   set   of   all   possible   actions   in   the   world,   with     referring   a ∈ A  
to   an   individual   action.   We   note   that   actions   may   not   have   deterministic   
consequences.   For   example,   flipping   a   coin   may   not   give   you   the   same   result   each   
time!   The   degree   to   which   actions   have   deterministic   effects   is   described   by   the   
transition   function .   

3. Transition   function :   The   transition   function   is   a   function   that   defines   the   
probability   of   moving   to   a   specific   next   state,   given   your   current   state   and   a   valid   
action.   The   transition   function,   ,   is   mathematically   defined   as   follows,  T  

.      [0, 1]  S × A × S′ →      
4. Reward :   The    reward     function    specifies   a   real   number   value   that   defines   the   

efficacy   or   a   measure   of   “goodness”   for   being   in   a   state,   taking   an   action   and   
landing   in   the   next   state.   Similarly   to   the   transition   function,   the   reward   is   defined   
as   follows,   .    Note   that   the   state   you   end   up   in   may   be   
uncontrollable   since   state   transitions   can   be   dynamic.   



  

5. Discount   Factor :   The   discount   factor   can   be   specified   using   ,   where   γ 0, )  γ ∈ [ 1
.   Note   the   non-inclusive   upper   bound   for   the   discount   factor   (i.e.,   ).  =  γ / 1  
Disallowing     allows   for   an   MDP   to   be   more   mathematically   robust.  γ = 1  
Specifically,   the   goal   for   RL   algorithms   is   often   to   maximize   discounted   reward   
across   time.   Consider   the   case   of   an   infinite   horizon   MDP   (i.e.,   the   MDP   never   
ends)   in   which   the   rewards   are   always   positive.   If   the   discount   factor,   ,   is   equal  γ  
to   1,   then   the   sum   of   future   discounted   rewards   will   be   infinite,   making   it   difficult   
for   RL   algorithms   to   converge   (i.e.,   know   when   they   can   stop   determining   which   
actions   should   be   taken   in   each   state).   

Basic   Principle   behind   Inverse   Reinforcement   Learning   
IRL   is   designed   to   find   some   reward   function   with   respect   to   an   ‘optimal’   demonstration   
provided.   IRL   tries   to   derive   the   Optimal   Policy   based   on   the   MDP   equation,   with   the   
primary   idea   of   the   optimal   demonstration   having   higher   rewards   than   any   other   
demonstrated   policies,   represented   with   the   optimization   equation:   
Find     s.t.  R*  

  
Derived   from   the   Value   function   of   Value   Iteration,   Inverse   Reinforcement   Learning   tries   
to   optimize   ,   which   is   the   Demonstrator’s   Reward   Function,   using   the   discount   factor  R*  

,   the   Sequence   of   States   defined   at   time   t    ,   the   demonstrator’s   policy   ,   and  γt , ∀t}  {st   π*  
the   set   of   learner’s   policies   .  π  

The   Basic   Principle   behind   Inverse   Reinforcement   Learning   is   to   find   a   policy   that   has   
the   reward   for   human   policy,   greater   than   or   equal   to   any   policy   that   the   robot   can   come   
up   with.   This   however   leads   to   several   problems,   such   as:   

● R   =   0   is   a   solution   to   the   optimization   problem   above,   leading   to   the   Reward   
Ambiguity   Problem   since   reward   should   not   be   equal   to   0.   

● Trainer   has   access   to   only   the   demonstrations   that   make   up   the   “traces”   or   
“trajectories”   defined   as     where   trajectories   are   a   set   of   state   action   pairs  τ}D = {  
defined   as   ,   instead   of   having   being   drawn  < , a , ∀t ∈{1, .., T}}  τ = { st   t >   .   τ  
from    π*  

● We   do   not   have   direct   access   to   the   optimal   policy,   or   a   way   to   ensure   that  π*  
given   demonstration   is   not   suboptimal.   

● Assumes   that   we   can   easily   enumerate   all   possible    π  



  

Linear   Cost   Inverse   Reinforcement   Learning:   Feature   Based   Reward   
Function   

The   most   basic   form   of   IRL   assumes   a   linear   cost   for   the   features.   In   Linear   Cost   IRL,   
the   reward   function   can   be   computed   with   respect   to   policy   at   state   s   and   weights  (s)  ϕ  
associated   with   that   state   policy,   simplifying   the   Reward   optimization   through:   

  

  
where     is   the   expected   discounted   feature   count   following   policy     .     is  μ (μ )  π : π→ Rd μ  
also   referred   to   as   the   feature   expectations.   
Therefore,   IRL   can   be   defined   as:   

Find   s.t.    ω*  

Advantages:   
●   can   be   easily   estimated   empirically   with   Monte   Carlo   samples   of   expert  (π  )μ *  

trajectories.     

○   where   ,   ,    (π) ϕ(s )μ ≈ n
1 ∑
∞

t=0
γt t (.|s )at ~ π t (.|s , a )st+1 ~ π t   t (.)s0 ~ p  

● The   number   of   expert   demonstrations,   m,   needed   for   a   good   estimate   is   
mathematically   proven   to   be   proportional   to   (Abbeel   et.   al.   2004).  φ| |  

○ Since   the   number   of   demonstrations,   m,   is   proportional   to   ,   m   is   NOT  φ| |  
proportional   to   the   complexity   of   the   expert   policy   nor   the   size   of   the   state   
space.   

Disadvantages:   
● The   reward   representation   is   restricted   to   be   linear   over   features.   Therefore,   

expected   discounted   sum   of   feature   values   or   feature   expectations   are   dependent   
on   state   visitation   distributions,   making   the   policy   skewed   towards   states   that   are   
most   common   in   demonstrations   (Fragkiadaki,   K.   2017).   

Max   Margin   IRL   
The   idea   behind   Max   Margin   IRL   is   to   create   a   maximum-margin   hyperplane   between  
policies   in   feature   space,   therefore   classifying   policies   based   on   their   optimality   
(Fragkiadaki,   2017).   Therefore,   the   IRL   equation   can   be   represented   with   the   equation:   

Find        rgmin ω * = a ω  | |ω  | |  22  
 .t. (ω  ) μ(π  )  ω  )  μ(π)  1 ∀π  s * T * ≥ ( * T +    



  

The   given   equation   is   similar   to   Support   Vector   Machines   (SVM),   therefore   it   is   possible   
to   intuitively   solve   the   IRL   problem   through   SVM.   Given   a   set   of   linearly   separable   data   
points   with   binary   labels   (Label   +1   or   Label   -1),   a   Support   Vector   Machine   finds   the   
hyperplane   that   bisects   the   points   such   that   the   points   on   either   side   of   the   hyperplane   
have   the   same   label.   For   example,   in   the   figure   below,   the   blue   and   orange   points   should   
be   given   labels   +1   and   -1   respectively.   A   SVM   would   try   to   find   a   hyperplane,   or   a   line   in   
this   2D   case,   between   the   blue   and   orange   points.   
  

  
Fig.   1:   Example   data   points   in   2D.   

  
A   hyperplane   can   be   defined   as   the   set   of   points   that   satisfy   ,   where     is    x  b   ω T +   = 0 ω  
the   normal   vector   of   the   hyperplane.   Then,   two   spaces   created   by   the   hyperplane   are   
characterized   by   the   set   of   points      and    .   With   this    x  b  0ω T +   >     x  b  0ω T +   <    
definition,   determining   which   side   of   the   hyperplane   an   arbitrary   point     falls   on   is  x  
straightforward;   compute   .   For   example,   consider   the   blue   point   x   in   the  ign(ω  x  b)s T +    
figure   below.   The   red   line   is   the   SVM   hyperplane.   To   classify   point   x,   the   SVM   projects   
the   point   x   onto   the   vector   ;   that   is   the   purple   point   .   The    ω   xω T ign(ω  x  b)s T +    
evaluates   to   +1   because   the   purple   projection   is   on   the   right-hand   side   of   the   hyperplane.   
The   remaining   blue   and   orange   points   are   labeled   similarly   until   all   blue   points   are   
labeled   +1   and   all   orange   points   are   labeled   -1.   
  



  

  
Fig.   2:   A   2D   example   of   SVM   classification.   

  
There   can   be   many   valid   separating   hyperplanes.   SVMs   define   the   “best”   hyperplane   as   
the   one   that   maximizes   the     between   the   hyperplane   and   the   closest   data   points.  arginm  
More   formally,   the   SVM   solves   the   following   optimization   problem,   which   is   equivalent   
to   maximizing   the     (Ma   &   Ng   2019):  arginm  

  
The   SVM   problem   can   be   used   to   solve   the   Max   Margin   IRL   problem,   where   the   data   
points   are   the   policy   feature   expectations.   Label   +1   is   given   to   the   expert   policy   feature   
expectations   and   Label   -1   is   given   to   all   other   policies.   Under   this   configuration,   the   
SVM   constraints   give   the   following   inequality   for   the   expert   policy:   

(expert   constraint)    (ω  μ(π  )  b)   1 ≤ 1 T * +    

And,   the   SVM   constraints   give   the   following   inequality   for   non-expert   policies,   which   
can   be   reworked   to   match   the   Max   Margin   constraint   when   coupled   with   expert   
constraint:   

(non-expert   constraint)   (ω  μ(π)  b)  1 ∀π  ­ 1 T +   ≥    
  (algebra)    μ(π)  b  1 1 ∀π  ω T +   +   ≤    

  (incorporate   expert   constraint)    μ(π)  b  1 ω  μ(π  )  b ∀π  ω T +   +   ≤   T * +    
  (algebra;   now   matches   Max   Margin   inequality)     μ(π  )    μ(π)  1 ∀π  ω T * ≥ ω T +     

Now,   the   SVM   problem   matches   the   Max   Margin   problem,   i.e.   SVMs   can   solve   the   
parameters   for   the   feature   based   reward   function.   
  



  

  
Fig.   3:   Separation   between   expert   feature   

expectations   and   non-expert   feature   expectations  

Algorithm   1   puts   together   the   concepts   presented   so   far   to   solve   the   overarching   IRL   
problem,   which   is   to   find   a   reward   function   that   motivates   an   expert   demonstrator.   Under   
the   assumption   that   the   reward   is   a   linear   weighting   of   state   features,   the   Max   Margin   
formulation   of   the   IRL   problem   becomes:     

Find   s.t.       ω *  ω  ) μ(π  )  ω  )  μ(π)  1 ∀π  ( * T * ≥ ( * T +    

In   other   words,   the   reward   parameters   should   result   in   the   expert   reward   being   greater  
than   all   non-expert   rewards.   Step   1   of   the   algorithm   solves   for     which   sets   up   the  (π  )μ *  
left-hand   side   of   the   Max   Margin   inequality.   Steps   2   -   4   set   up   the   right-hand   side.   
Specifically,   Step   1   initializes   a   collection   of   non-expert   policies.   Step   3   leverages   the  
SVM   analogy   to   solve   for   linear   reward   function   parameters.   Given   those   parameters,   
Step   4   leverages   a   Reinforcement   Algorithm   to   solve   for   a   new   policy   to   be   added   to   a  π 

︿  
collection   of   non-expert   policies.   Note,   any   reinforcement   algorithm   can   be   used   in   Step   
4.   Finally,   Steps   5-6   check   that   the   Max   Margin   constraint   is   met   and   return   the   reward   
parameters.   If   the   constraint   is   unmet,   the   algorithm   tries   again   after   adding   another   
non-expert   policy   to   its   collection.   
  

Algorithm   1:   Constraint   Generation   (Abbel   et.   al.   2004)   

1. Estimate     using     expert   demonstrations,   where    (π  )μ * k  k ~   φ| |    
2. Initialize     and   add   to   empty   policy   set    π0 Π  
3. Solve   for    using   an   SVM.   Optional:   add   slack   variables   /   distance   function   ω *  
4. Solve   for   a   new   policy   using   .   Add     to    π 

︿ (s)  (ω  )  φ(s)R =   * T π 
︿ Π  

5. If     return    ω  )  μ(π  )  ω  )  μ(π)  1 ∀π in Π  ( * T * ≥ ( * T +    ω *  
6. Go   to   Step   3   



  

The   optional   note   in   Step   3   refers   to   slack   variables,   which   are   a   way   to   handle   
suboptimality,   and   a   distance   function,   which   is   key   to   the   “Standard   Prediction”   Max   
Margin   formulation.   These   ideas   will   be   presented   in   the   subsequent   sections.   

Suboptimality   

Suboptimality   can   come   from   suboptimal   expert   demonstrations   and/or   suboptimal   
feature   space.   In   the   SVM   analogy,   this   means   the   expert   policy   feature   expectations   are   
not   linearly   separable   from   all   other   policy   feature   expectations.   The   figure   below   shows   
an   example   of   this   in   a   2D   space.   In   this   situation,   it   is   impossible   to   have   a   2D   
hyperplane   that   can   linearly   separate   the   expert   policy   ( )   from   the   other   sub-optimal  π*  
policies   ( ).   , π , ππ0   1   2   

  
Fig.   4:   Expert   policy   cannot   be   linearly   separated   from   other   

policies   in   feature   space,   indicating   suboptimality.   

In   Figure   4,   the   expert   policy,   ,   cannot   be   linearly   separated   from   other   policies   in   the  π*  
feature   space.   The   presence   of   shows   that   there   is   a   policy   that   is   more   effective  (π )μ 2  
than   the   supposed   expert   policy,   which   indicates   the   presence   of   some   form   of   
suboptimality.   

Solution   to   Suboptimality:   Slack   Variables   

Find        rgmin   ω * = a ω  | |ω  | |  22 + C ∑
 

π
ξ π  

  where   C   is   a   tuned   hyperparameter.  .t. ω  μ(π  )    μ(π)  1  ξ    ∀π  s T * ≥ ω T +   ­   π  
  

Aside   from   engineering   better   features   and   perfecting   demonstrations,   a   solution   to   
suboptimality   is   to   add   slack   variables   to   the   inequality   constraint   in   the   Max   Margin   
problem.   Each   policy   receives   a   slack   variable   .   In   the   2D   example,     would     ξ π ≥ 0  π 2  
receive   a   non-zero   slack   variable   to   allow   a   violation   of   the   constraint   inequality.   To   
prevent   the   slack   variables   from   growing   too   large,   the   sum   of   the   slack   variables   is   



  

included   in   the   minimization,   similar   to   a   regularization   term.   The   previous   Max   Margin   
formulation   can   be   seen   as   a   special   case   of   the   slack   variable   version   with   all   slack   
variables   set   to   0.   

  
Fig.   5:   the   feature   expectations   of   a   non-expert   policy,   ,   is   allowed  (π  )μ  

2  
to   cross   the   decision   boundary   (red)   because   it   has   a   non-zero   slack.   

“Standard   Prediction”   Max   Margin   Formulation   

Find        rgmin   ω * = a ω  | |ω  | |  22 + C ∑
 

π
ξ π    

 .t. ω  μ(π  )    μ(π)  1  ξ     m(π,   ) ∀π  s T * ≥ ω T +   ­   π +   π *  
  

The   main   idea   behind   the   Standard   Prediction   Max   Margin   is   that   the   performance   
margin   between   the   expert   policy   and   another   policy   should   be   related   to   how   “different”   
the   two   policies   are.   This   notion   of   difference   is   represented   by   the     term   and  (π,   )m π *  
will   move   the   hyperplane   away   from   the   policies   that   are   different   from   the   expert.   An   
example   of   this   function   is   the   number   of   states   that     and   disagree   on,   i.e.  π  π *  

.  (s) =   (s)  π / π *  

Max   Entropy   IRL   
In   Maximum   Entropy   IRL,   instead   of   the   Maximum   Margin,   an   Entropy   variable   is   used   
to   handle   the   Reward   Ambiguity.   Based   on   Information   Theory,   the   Maximum   Entropy   
IRL   tries   to   maximize   the   entropy   of   the   distribution   over   possible   trajectory   paths   
subject   to   the   feature   constraints   from   observed   data,   to   maximize   the   likelihood   of   the   
observed   data   under   the   maximum   entropy   (exponential   family)   distribution   (Jaynes   
1957),   which   in   turn   allows   for   the   selection   of   the   trajectory   with   greatest   Information   
Gain,   addressing   the   problem   of   Reward   Ambiguity   using   the   following   equation:   

  rgmax og P (τ |ω, T )ω* = a ω ∑
 

τ≈Dem
l     



  

where,      is   the   trajectory   from   the   Demonstrator   represented   as   a   set   of   state   action  τ  
pairs   in   the   form   of     and   T   is   the   transition  {  , a , , a , .., , a } τ =   < s0   0 > < s1   1 > . < sn   n >  
function.   The   purpose   of   Max   Entropy   IRL   is   to   make   the   trajectory   from   Demonstration   
very   likely   to   happen.   

1) Using   Gradient   Descent   over   Model   Parameters   
We   use   the   Gradient   Descent   approach   to   improve   the   model.   To   achieve   this,   we   

use   value   iteration   for   every   step   of   the   gradient   descent   algorithm   where   Loss   can   be   
represented   as:   

  
Given   the   Expected   Edge   Frequencies   and   the   Loss   Function,   Gradient   can   be   calculated   
with   ease.   In   order   to   use   the   gradient   descent   approach,     is   calculated   by   enumerating  Dsi  
each   possible   path   with   the   following   pseudocode:   

In   the   Backwards   Pass   Step   of   Algorithm   2,   we   calculate   the   probability   mass   associated   
with   each   branch   through   a   Backwards   Iteration.   The   equation   used   calculates   the   

Algorithm   2:   Expected   Edge   Frequency   Calculation   (Ziebart   et.   al.   2008)   

A) Backward   Pass   
1)  , ∀i, j  zsi

(0)← 1      
2) For   l   =   1   to   N  

3)       (s |s , a ) e  z , ∀i, jzai,j
(l)←∑

 

k
T k i   j

ωϕ(s )i
sk
(l­1)      

4)       , ∀izsi
(l)← ∑

 

ai,j

zai,j
(l­1)    

B) Local   Action   Probability   Computation   

5)  (a |s ) , ∀i, jP ij i ←   zsi
(N )

zaij
(N )

     

  
C) Forward   Pass   
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D) Summing   over   Frequencies   
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Entropy   of   each   action   and   state   based   on   the   demonstrated   trajectories.   In   the   Local   
Action   Probability   Computation   Step,   we   calculate   the   partition   function   for   each   action   
and   state   pair   based   on   the   previously   computed   probabilities   for   each   state   and   action.   
The   partition   function   yields   local   action   probabilities   which   are   used   in   the   Forward   Pass   
Step   to   compute   state   frequencies   in   each   timestep.   The   State   Frequencies   are   then   
combined   for   each   branch   (Ziebart   et.   al.   2008).   

Bayesian   IRL   
Bayesian   IRL   attempts   to   maximize   the   probability   of   the   reward   function   given   a   
demonstrator   rather   than   maximizing   trajectory   given   reward   like   in   other   IRL   methods.   
Bayesian   IRL   assumes   there   is   a   demonstrator,   ,   operating   in   a   markov   decision  χ  
process,   who   is   attempting   to   maximize   their   total   accumulated   reward   from   function,   R,   
with   a   stationary   policy.   With   these   assumptions,   it   is   possible   to   model   the   probability   of   
each   state   action   pair   from   X’s   demonstration   with   the   function:   

 r ((s , )|R)  eP χ i ai =   1Z i
αχQ (s , a , R)*

i i  

where     is   a   parameter   that   represents   the   coincidence   that     selects   the   best   action   from  α χ  
their     function.   Because   the   deomstrator’s   policy   is   assumed   to   be   stationary,   the  Q*  
probability   of   the   whole   demonstration,   ,    can   be   given   as:  Oχ  

,   where    r (O |R)  eP χ χ =   1Z
αχE(O ,R)χ (O , ) (s , a , R)E χ R = ∑

 

i
Q* i   i    

This   likelihood   is   essentially   a   boltzmann-type   distribution   with   energy   and  (O , R)E χ    
temperature       .   From   this   likelihood,   we   derive     by   applying   the   Bayes   Rule:  1

αχ r(R|O )P χ  

 r(R|O )    e P (R) P χ =   Pr(O )χ
Pr (O |R)P (R)χ χ R =   1Z′

αχE(O ,R)χ
R  

The   main   reason   for   using   this   model   formulation   is   that   it   allows   for   parameterization   of   
additional   information.   In   particular,   the   alpha   parameter,   which   controls   the   temperature,   
is   determined   by   the   skill   of   a   demonstrator.   A   lower   temperature   demonstration   will   
have   lower   overall   effect   and   confidence   in   the   model.   This   allows   for   suboptimal   
demonstrators   to   be   included   in   the   model's   training   data   and   still   have   the   model   achieve   
good   performance.   This   model   formulation   also   allows   for   parameterization   of   a   prior   of   
rewards   which   can   help   incorporate   knowledge   of   the   problem   space   into   the   model.   

When   evaluating   the   loss   for   a   Bayesian   IRL   model   on   a   reward   learning   task,   either   
linear   or   squared   error   are   commonly   used:   

  



  

For   apprenticeship   learning   task,   Bayesian   IRL   defines   the   following   policy   loss  
function:   

  

Where     is   the   vector   of   optimal   values   for   each   state   achieved   by   the   best   policy  (R)V *  
for   R   and   p   is   any   chosen   norm.   To   solve   a   Bayesian   IRL   problem,   the   goal   is   to   find   the   
policy   that   minimizes   the   expected   policy   loss   for   the   posterior   distribution   for   R.   A   
direction   minimization   of   policy   loss   is   a   hard   problem   to   compute,   so   instead   the   optimal   
policy   for   the   mean   reward   function   can   be   computed.   These   lead   to   the   same   policy   and   
a   detailed   proof   of   why   this   is   the   case   is   available   in   Ramachandran,   D.,   and   Eyal   A.   
2009.   However,   in   order   to   compute   the   optimal   policy   for   the   mean   reward   function,   the   
mean   reward   function   itself   must   be   computed,   which   is   not   trivial.   Bayesian   IRL   uses   a   
markov   chain   monte   carlo   sampling   algorithm   known   as   PolicyWalk   to   generate   samples   
from   the   posterior   distribution   and   returns   the   mean   reward   function   from   the   samples   
that   is   then   treated   as   the   mean   reward   function.   

PolicyWalk   moves   along   a   markov   chain   and   keeps   track   of   the   optimal   policy   for   the   
current   reward   vector.   It   starts   with   a   random   reward   vector   and   optimal   policy   for   that   
vector.   Then   it   picks   a   random   similar   reward   vector.   It   then   computes   the   Q   function   for   
the   MDP   with   that   new   reward   vector.   If   there   is   any   state-action   pair   where   the   old   
policy   is   not   optimal   with   the   new   reward   vector,   then   it   may   update   the   reward   and   
policy   based   on   a   probability   from   the   posterior   distribution.   This   step   of   sampling   a   new  
reward   vector   and   checking   for   updates   is   repeated   until   a   satisfactory   reward   vector   is   
found.   

Algorithm   3:   Policy   Walk   (Ramachandran   et.   al.   2009)   

1. Pick   a   random   reward   vector     
2.  = PolicyIteration(M , R)π :      
3. Repeat:   

a. Pick   a   reward   vector     uniformly   at   random   from   the   neighbours   of  R  
  

b. Compute     for   all    (s, , )Qπ a R s, ) , A.  ( a ∈ S    
c. If   ,    (s, ) S, )  ∃ a ∈ ( A (s, (s), )  Q (s, , )Qπ π R <   π a R  

i.  = PolicyIteration(M , , )π :   R π  
ii. Set     and     with   probability    =R : R =π : π in{1, }m   P (R,π)

P (R, π)  
Else   

i.   with   probability    = RR :   in{1, }m   P (R,π)
P (R, π)  

4. Return   R  



  

Compared   to   other   methods   of   IRL,   Bayesian   IRL   has   several   advantages.   These   
advantages   come   from   the   additional   parameters   that   are   available   in   the   likelihood   
function.   The     parameter   allows   for   information   about   a   demonstrators   skill   to   be  α  
included   in   the   model.   In   situations   where   there   are   suboptimal   demonstrators,   Bayesian   
IRL   can   still   perform   well   because   it   acknowledges   in   the   model   that   demonstrators   will   
not   always   take   the   correct   action.   The     parameter   allows   for   a   prior   of   rewards   to  (R)P R  
be   included   into   the   model.   This   helps   incorporate   further   problem-level   information   into   
the   model   that   was   not   present   in   just   demonstrations,   which   often   leads   to   better   
performance.   However,   since   these   extra   parameters   are   not   optional,   they   could   also   lead   
to   worse   performance   if   they   are   not   reasonably   estimated.   

3. Evaluation   
IRL   works   well   for   situations   where   the   reward   function   is   difficult   to   formulate,   or   in   scenarios   
where   learning   the   reward   function   itself   is   a   goal.   This   makes   IRL   extremely   effective   in   the   
field   of   Learning   from   Demonstration,   where   an   expert   can   train   a   robot   to   do   a   task.   Even   
outside   of   computer   science   related   fields,   the   idea   of   IRL   can   be   applied   to   other   fields   such   as   
physical   sciences   and   control   theory.   In   the   field   of   physical   science,   inverse   problem   theory   
works   with   inferring   model   parameters   from   a   description   of   a   physical   system.   In   control   theory,   
there   has   been   work   done   on   recovering   an   objective   function   for   deterministic   linear   systems.   

  Advantages   Disadvantages   

Linear   Cost   
Feature   
Based   
Reward   IRL   

- Number   of   demonstrations   
required   to   estimate   expert   policy   
is   linear   to   the   number   of   
dimensions   of   state   feature   space.   

- Sensitive   to   Reward   Ambiguity   
- Sensitive   to   suboptimality   

Max   Margin   
IRL   

- Relaxed   constraints   allowing   for   
suboptimality   with   the   use   of   the   
slack   variable   

- Can   be   optimized   using   an   SVM   

- Assumes   linear   rewards   
- Needs   to   solve   for   a   new   policy   from   

scratch   in   each   iteration.   

Max   Entropy   
IRL   

- Model   is   built   on   the   probabilistic   
model   of   demonstration   paths,  
making   it   more   accurate.   

- Requires   knowledge   of   environment   
dynamics   

- Requires   data   points   to   be   very   similar   

Bayesian   
IRL   

- No   suboptimality   with   good   
knowledge   of   demonstrator   skill   
and   reward   prior   

- Assumes   linear   rewards   
- Scales   poorly   in   large   environments   
- Requires   some   amount   of   knowledge   of   

demonstrator   skill   and   reward   prior     



  

4. Conclusion   
There   are   many   challenges   remaining   in   the   field   of   IRL.   Suboptimality   of   demonstrations   is   one   
of   the   key   challenges   faced   when   using   IRL.   The   lack   of   a   way   to   validate   if   the   demonstration   is   
optimal   or   not   makes   the   application   of   IRL   to   critical   applications   impossible.   Moreover,   feature   
selection   remains   a   challenge   for   engineering   effective   models   through   IRL,   often   requiring   hand   
engineered   features   so   that   policies   are   linearly   separable,   which   requires   a   lot   of   effort   or   the   
creation   of   a   feature   extractor   model.   Some   other   problems   are   that   many   existing   methods   do   
not   have   provable   analysis   of   the   time   complexity   of   their   methods,   and   do   not   have   comparisons   
with   other   methods   with   this   metric,   and   that   there   is   a   lack   of   testbed   domains   that   can   be   used   
for   evaluation   of   IRL   methods   (Arora   et   al,   2019).   

The   key   advantage   of   IRL   compared   to   Reinforcement   Learning   is   the   removal   of   the   need   for   
the   demonstrator   to   have   knowledge   about   the   programming   methodologies   used   as   well   as   the   
removal   of   the   need   for   the   roboticist   using   the   IRL   to   have   expert   knowledge   about   the   field   of   
application.   A   simple   interface   to   allow   for   the   training   of   the   robot   by   experts.   This   makes   
extraction   of   the   domain   expertise,   allowing   for   the   deployment   of   robotic   automation   in   a   wide   
range   of   areas   in   short   timeframes   through   automated   domain   expertise   extraction.   IRL   also   
makes   the   application-specific   nuances   to   be   scalable.   
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