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Abstract—Recent work in inverse problems has seen the use
of deep neural networks as natural image priors for solving
image inverse problems, such as denoising, in-painting, super-
resolution, and compressive sensing. There are two ends to
the spectrum of leveraging deep neural networks, (i) using an
untrained neural network and (ii) training a neural network on
thousands of training examples. Two recent works have explore
the middle ground, training neural networks on a low shot
dataset before solving inverse problems. Compressed Sensing
with Deep Image Prior and Learned Regularization proposed
a novel regularization method that is learned from a handful of
data. Low Shot Learning with Untrained Neural Networks for
Imaging Inverse Problems pre-trains a neural network on a small
amount of data to improve image reconstruction performance. In
this work, a hybrid low shot learning method that incorporates
elements from both of these approaches is proposed and tested
on the MNIST and STARE retinopathy datasets. The hybrid
approach produces better image reconstructions when compared
to both prior works while using a comparable amount of pre-
training data.

Index Terms—deep image prior, low shot learning, learned
regularization

I. INTRODUCTION

The project aims to solve the compressive sensing inverse
problem which recovers an unknown image x∗ ∈ Rn given a
set of noisy, linear measurements y ∈ Rm defined by:

y = Ax∗ + η (1)

where A ∈ Rm×n is the measurement matrix and η ∈ Rm

represents noise. Since m < n, the system of noisy linear
equations is underdetermined and ill-posed.

Traditional methods assume image sparsity in hand-crafted
bases Ψ : Rn −→ Rk , such as the wavelet basis [1], and solve
the following optimization problem:

z∗ = argminz∈Rk

1

2
||y −AΨ(x)||2 + λJ(x),

x∗ = Ψ−1(z∗).
(2)

where z ∈ Rk resides in the basis space and J : Rn −→ R is a
regularization term which is controlled by a hyperparameter λ.

Now, images x are recovered by taking the inverse transform
Ψ−1 of z.

With rising computational resources, more work has been
done to leverage deep neural network methods which tend
to outperform these traditional methods. For example, several
methods assume the reconstructed image falls within the range
of the neural network and replace Ψ with a neural network
G(z;w), parameterized by network weights w ∈ W. With the
additional network parameter space W, the optimization from
(2) can occur over Rk, W, or both. Ignoring the regularization
term, we have:

w∗ = argminw∈W
1

2
||y −AG(z;w)(x)||2,

x∗ = G(z;w∗)

z is randomly initialized.

(3)

z∗ = argminz∈Rk

1

2
||y −AG(z;w)(x)||2,

x∗ = G(z∗;w)

w is randomly initialized.

(4)

w∗, z∗ = argminw∈W,z∈Rk

1

2
||y −AG(z;w)(x)||2,

x∗ = G(z∗;w∗).
(5)

Broadly speaking, these methods fall under three categories:
• pre-training G(z;w) with large amounts of data
• pre-training G(z;w) on low shot examples
• G(z;w) is untrained
Compressive Sensing using Generative Models (CSGM)

[11] employs the first method and pre-trains Deep Convolu-
tional Generative Adversarial Networks (DCGAN) and Vari-
ational Autoencoders to generate images by using hundreds
of thousands of training images. In contrast, Deep Image
Prior (DIP) [2] employs the third method, which requires
zero pre-training of the U-net neural network. Although DIP
does not solve the compressive sensing problem, it still solve



Fig. 1. MNIST Reconstructions. It is unclear if PSNR changes are due to methodology design or latent code initialization

inverse imaging problems and the approaches can be applied
to compressive sensing.

In fact, this is exactly what the authors of Compressed
Sensing with Deep Image Prior and Learned Regularization
[3] did; one of their contributions adapted DIP for compressive
sensing. Perhaps more interestingly, they proposed a learned
regularization (LR) term for the network parameters w, which
is learned from a small set of low shot training examples.
In a similar vein, Low Shot Learning with Untrained Neural
Networks for Imaging Inverse Problems [4] leveraged a small
number of training examples to pre-train the network before
image reconstruction.

Both of these methods fall under the second category and
form the basis of this paper. Since both approaches utilize low
shot training examples before test time image reconstruction,
this work proposes a hybrid low shot learning approach (Sec-
tion III) and demonstrates that it can improve reconstruction
results on the STARE retinopathy dataset (Section IV).

II. PROBLEM STATEMENT

The compressive sensing inverse problem aims to recovers
an unknown image x∗ ∈ Rn given compressed (m < n) linear
measurements y = Ax∗ + η ∈ Rm where A ∈ Rm×n is the
measurement matrix and η ∈ Rm denotes noise.

It is assumed that the image x∗ belongs in a data distribution
D and there is access to small number of example images
{xi}Si=1 from the same distribution. In other words, x∗ ∼ D
and xi ∼ D s.t. 1 ≤ i ≤ S.

III. METHODOLOGY

A. Learned Regularization

The LR assumes the neural network parameters to belong
to a Gaussian distribution, as they are randomly initialized
with Gaussian weights. Then, using a low shot number of
examples S (around 10), the DIP problem is solved, generating
S number of ”optimal” network parameters {wi}Si=1. This
sample of network weights is used to compute the mean µw

and covariance Σw matrices in order to represent an ”optimal”

Gaussian network parameter distribution N (µw,Σw). Then,
the LR term is defined as:

LR(w) = (w − µw)
TΣ−1

w (w − µw) (6)

which effectively measures the distance between the neural
network parameters (w) and the low shot estimate for the
optimal network parameter Gaussian distribution N (µw,Σw).
The exact procedure for estimating parameters µw and Σw is
detailed in Algorithm 1 in the appendix of [3].

B. Low Shot Pre-training

The pre-training procedure follows directly from [4]; before
solving the reconstruction optimization, use {xi}Si=1 low shot
example images to initialize neural network parameters ŵ and
latent codes {ẑi}Si=1. The following gives the optimization
objective with L : Rn×Rn −→ R being the ℓ−2 loss function:

argminw,z1,...,zS

1

S

S∑
i=1

L(G(zi;w), xi) (7)

C. Reconstruction Optimization: Step 1

Similar to [4], the reconstruction optimization is split into
two steps. The first step remains the same; optimize for the
latent code ẑ that is specific to the image to be reconstructed
using the pre-trained initializations ŵ and {ẑi}Si=1:

argminz
1

2
||AG(z; ŵ)− y||22 (8)

At the start of this optimization, the latent code is initialized
using a random sample from a multivariate Gaussian distribu-
tion fit of {ẑi}Si=1.

D. Reconstruction Optimization: Step 2

Here, the proposed method diverges from [4] in two ways.
First, rather than optimize over the latent space and the
network parameter space, the proposed method optimizes
solely over the network parameter space. This is done for
two reasons: (i) to allow a fair comparison against [2], [3]
which only optimize for the network parameters and (ii) to
speed up the optimization. The second modification comes in



Fig. 2. PSNR Percent Increase (averaged over 5 test images)

the addition of two regularization penalty terms from [3], the
learned regularization and total variation (TV) [10]. The final
optimization problem is:

minw
1

2
||AG(ẑ;w)− y||22+λTTV (G(ẑ;w))+λLLR(w) (9)

where λT and λL are hyperparameters that control the
influence of the regularization terms (see IV-A-Implementation
Details for specific values).

IV. RESULTS

A. Experiment Setup

Datasets: Following [3], the first 100 test images from the
MNIST dataset [5] and the first 20 images from the STARE
retinopathy dataset [6] are used to evaluate the proposed
method in the experiments. Pixel intensity values range from
-1 to 1.

Measurement Matrix: The conventional measurement ma-
trix from compressive sensing literature is used. A ∈ Rm×n is
Gaussian i.i.d sampled from N (0, 1

m ), where n is the number
of pixels in the ground truth image and m is the number of
measurements. For MNIST (n = 784), m ∈ [50, 100, 200].
For STARE (n = 16384), m ∈ [1000, 4000, 8000].

Noise: The noise vector η has entries drawn from N (0,
σ2
η

m )
where σ2

η ∈ [0, 10, 100, 1000]
Learned Regularization: The experiments use the pre-

trained LR parameters that are available in the GitHub [7].
Low Shot Pre-training: S ∈ [0, 10, 50, 100] for MNIST

images and S ∈ [0, 15] for STARE images. 5 hold-out images
from both datasets were used for test-time reconstruction
evaluation.

Baselines: The proposed method is compared against three
baselines: untrained CSDIP (DIP with a DCGAN architecture
as in [4]), untrained CSDIP+LR (DIP with LR enabled as
in [3]), and DIP pre-trained on S low shots, or CSDIP+S,
(same as [4] except for the modification to step 2 of the
reconstruction optimization as in the proposed method (see
III-D)). Since [3] requires it, all baselines will be use the TV

regularization in the reconstruction optimization loss for a fair
comparison across methods.

Metrics: Reconstruction performance is quantitatively mea-
sured using Peak Signal-to-Noise Ratio (PSNR).

Implementation Details: The learned regularization param-
eters used in the experiments are the exact same as those found
in the GitHub repository [7] for [3]. The low-shot pre-training
hyperparameters are the same as in [4]. Specifically, (7) is
optimized using Adam optimizer [8] for 50,000 iterations with
a learning rate of 10−3. Then, (8) is solved using Adam for
1250 iterations with a learning rate of 5×10−2. Finally, (9) is
solved using RMSProp optimizer [9] for 1000 iterations with
a learning rate of 10−3 and momentum of 0.9. For MNIST,
λT = 10−2 and λL = 0. For STARE, λT = 2 × 10−2 and
λL = 1000. These values were found using a gridsearch by
the authors of [3].

Additional implementation details, like neural
network architectures, are in the code, which
is publicly available on a GitHub repository:
https://github.com/reagankan/compsensing dip/tree/python3

B. Experiment Results

1) MNIST: As noted in [3], the reconstructions are highly
sensitive to latent code initializations since the optimization
objective tends to have local minima and the DCGAN latent
dimensions (128) are so close to the number of pixels n =
784. Even with low shot pre-training and the extra latent code
optimization step, reconstructions varied with different latent
code initialization. For this reason, method comparison using
MNIST dataset is forgone. Fig. 1 shows some example MNIST
reconstructions.

2) STARE: In summary, the proposed method beats all
baselines with a 10.58% to 41.02% average PSNR percent
increase over CSDIP, 2.16% to 5.21% increase over CS-
DIP+LR, and 0.97% to 4.83% increase over CSDIP+15. The
benefit is most prominent when the measurements are noisy
and/or compressed. Fig. 2 shows all average PSNR percent
differences.



To examine how each method responds to varying noise
and compression levels, PSNR is plotted against each of
these dimensions in Fig. 3. All methods can handle different
levels of noise. However, CSDIP is most severely impacted by
high compression rates. Finally, example reconstructions with
corresponding PSNR scores are showed in Fig. 4.

CONCLUSIONS

This work presents a hybrid low shot learning
method for Deep Image Prior that outperforms previous
low shot learning approaches at the compressive
sensing inverse problem. Improvement tends to be
strongest for noisy and compressed measurements.
Code for experiments is released publicly on GitHub
https://github.com/reagankan/compsensing dip/tree/python3.
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Fig. 3. Left: PSNR vs Noise. All methods are robust against noise. Right: PSNR vs Number of Measurements. CSDIP degrades the fastest with compression.

Fig. 4. STARE reconstructions with PSNR. Bold denotes the best score and underline denotes 2nd best. Left: least noise/compression. Right: most
noise/compression.



V. APPENDIX

A. Ablation Study: CSDIP vs CSDIP+LR vs CSDIP+15

To examine the contribution of LR and Low Shot Pre-training separately, the following figure shows the average PSNR
percent increase comparing CSDIP+LR against CSDIP and comparing CSDIP+15 against CSDIP.

Left: CSDIP vs CSDIP+LR. Right: CSDIP vs CSDIP+15

Except for when σ2 = 10 and m = 1000, CSDIP+15 provides the most reconstruction improvement. We can see the relative
PSNR percent increase in the next figure.

CSDIP+LR vs CSDIP+15



B. All STARE Reconstructions














