
Classification and Interactive visualization of tumor types in 
Neurofibromatosis based on RNA-seq and Drug Screening data 

Introduction to the Motivating Problem 

Neurofibromatosis (NF) is a rare genetic disorder of the nervous system affecting the development of 
nerve cell tissues. The three entities of neurofibromatosis are Types 1 (NF1), Types 2 (NF2), and 
schwannomatosis (SWN), with NF1 being the most common and SWN the rarest [1]. NF usually causes 
benign tumors with a nearly 10% chance of malignancy. The condition does not currently have a cure; 
thus, the most important elements of management are early diagnosis and treatment of the effects of the 
disease [1]. The objective of this proposal is to identify molecules associated with different tumor types of 
NF1 and NF2 and possible therapeutic targets using machine learning algorithms to classify the RNA 
sequence data and drug screening data.  

Identifying transcriptome (RNA) sequence signatures that are unique to specific tumor types has been an 
area of interest and applied to other types of cancers. These analyzed signatures help identify expression 
profiles that help in disease prognosis and treatment [2]. Previous genomic profiling studies for NF 
demonstrated that NF tumor types have limited genomic variants with great phenotypic heterogeneity. 
Few studies published previously characterized the tumors associated with NF1 type using Latent 
Variable analysis and supervised machine learning [3]. Related RNA seq work has been done to leverage 
deep neural networks for other types of cancers [4]. A study found the predictive performance of two 
feed-forward neural networks and a linear model to be comparable [5].  

Previous work has also been done on drug-screening data, specifically the relationship of drugs with their 
target proteins. Ma et al. analyzed large topological modules extracted from networks like protein-protein 
interaction (PPI) using a couple of different cluster detection algorithms [8]. Evaluating the performance 
of these algorithms using metrics like shortest-path and diffusion correlation, the results of this study 
indicated that the Walktrap clustering algorithm achieved the best performance overall.  

By utilizing the proposed workflow below, we will attempt to successfully analyze the data and clearly 
visualize the results. The payoff of these efforts will help identify important gene targets for the 
development of a treatment or therapy as well as for the classification of NF types. This project will also 
benefit NF2 patients as there is no previous classification done for the tumors normally associated with 
this type of NF. The drug study will help identify potential drug targets based on RNAseq results. It will 
be highly useful for researchers when trying to develop clinical trials, and consequently, it will be 
beneficial for the patients who would take therapeutics in the future if a drug is developed. Further studies 
can be done on larger datasets and untested patients as well, to prove the validity of the project.  

Since we could not find any previous studies on the classification of NF2 tumors based on RNA seq data, 
in this project, we plan to identify the transcriptomic signatures of tumors associated with two types of NF 
- NF1 and NF2 - as well as possible drug targets. The traditional approach to drug therapy development 
has been to test new or repurposed drugs in various model systems based on hypotheses of tumor 
pathogenesis [9]. Several large scale projects characterizing drug sensitivities have been done, but many 
ignored drugs commonly used to treat tumors common to NF1 and NF2 [10]. For our approach, we will 
be examining drug screening data and looking specifically at those thought to be effective against NF 
tumors.  

 



 

Proposed Methods 

The first step of our project was to clean and normalize the datasets [14]. Later, dimensionality reduction 
would be done using PCA for downstream classification [11]. In case PCA did not produce desirable 
results, we proposed an alternative dimensionality reduction technique. Our backup plan was to exploit 
the autoencoder framework by Geddes [7] and experiment with methods in the random projection step, 
such as spectral projections. Using these reduced dimensions, supervised algorithms like random forest 
were used for training and identifying molecular signatures that differ in each of the tumor types. Random 
forest classifier was considered because it is commonly used for the classification of cancer types and the 
study on NF1 classification also included this classifier with Latent variables [3][13]. Accuracy, 
Precision, Recall, F1-score, and ROC curve were the proposed metrics to be used to validate performance. 
The most highly expressed genes for each tumor type would be used to find drug associations. For 
integrative visualization, we planned to use D3 to generate a heatmap to visualize the distribution between 
the tumor types and their genes. We also planned to generate a second heatmap to display the correlation 
between PCA latent variables and tumor types, and explore bioinformatics tools like iDEP to generate 
volcano and scatter plots. 

Performed Methods and Experiments 

Datasets 

The datasets used were obtained from NF researchers who granted access via the NF Hackathon hosted 
by the Children’s Tumor Foundation. Since the data is highly sensitive due to patient privacy concerns, 
access to the datasets had to be requested through synapse.org.  

The RNAseq meta dataset includes a total of 6,130,214 records which include differential expression data 
for tumor samples from 255 patients. These samples are primarily associated with two different 
diagnoses, Neurofibromatosis 1 and 2, but also had non-NF tumors for control purposes. The tumor types 
included in the datasets are Cutaneous Neurofibroma (cNF), Plexiform Neurofibroma (pNF), Low-grade 
Glioma, High-grade Glioma, Meningioma, and Schwannoma, with the latter two being tumor types of 
NF2. While it may seem like 255 is a small sample size to work on, it should be noted that NF is a rare 
disease so large sample sizes are uncommon, and several studies [3] have used similar sized datasets (or 
even smaller) for their studies. Furthermore, each data point in this dataset has about 50k features 
corresponding to the differential expression of each gene, which further drives the importance of 
dimensionality reduction, but also justifies the dataset size since studies have found that for random 
forests, purity or near purity tends to be more effective when the feature space is large and the sample size 
is small [20]. 

The genomic datasets included information about tumors associated with patients, the tumor type, 
diagnosis, and the RNA seq total counts obtained for each gene in the tumor sample. The drug dataset 
included genes and information on their drug association, i.e. possible targets and dose responses. 

 



 

Filtering/Cleaning 

RNA seq has large dimensions as there are a large number of genes in the count data. Some genes in the 
dataset were very sparse across all samples, showing little evidence of differential expression [14]. They 
may also add a burden when estimating false discovery rates and detecting differentially expressed genes. 
Some of the tumor types in the given datasets are marked as NaN, so we tried to obtain the missing 
information from the modelOf column and dropped the rows for which we couldn’t find a value. 

Normalization 

An important consideration for differential expression tests is variance. We shrink our estimates to have 
statistical meaning by normalizing the data. We used Variance stabilizing transformation (vst) of Deseq2 
package of R to use for dimensionality reduction. We tried the rlog() method and it took several hours to 
run, so we chose not to use it. Minmaxscaler and log transformation were also tested. We used vst in the 
final analysis as it takes into account the size factor (depth of normalization) and the  mean dispersion 
across the samples and is often preferred before machine learning analysis. For the drug analysis, the 
RNAseq data was normalized by subtracting the mean z-score of the normal tumors from the other tumor 
types. 

Dimensionality Reduction 

Since each data point contains data for about 50k features, there is a need for dimensionality reduction in 
order to avoid the curse of dimensionality. In our case, feature selection is an important step to optimize 

the dimensions which would reduce 
computational cost as well as improve 
accuracy for classification of gene 
expression data (phenotypes). The extracted 
number of features influences the 
classification results by over/under-fitting the 
data. PCA emphasizes variation and brings 
out strong patterns in the dataset. We apply 
PCA to our dataset via singular value 
decomposition. To determine the number of 
PCA components, we make the plot on the 
left and choose the number that retains 99% 
of the data variance. Currently, the latent 
space generated from PCA produces results 
that are good enough to not warrant 
experimentation with the alternative 

autoencoder technique.  

Classification 

Using these reduced dimensions, the Random forest algorithm is used for training and identifying 
molecular signatures that differ in each of the tumor types [3][13]. The crucial steps of classification can 

 



 

be considered as model fitting and validation. Machine learning on gene expression data could be a 
valuable new tool to understand differences between and within entities. For this project, we used a 
supervised learning - Random forest algorithm - as most papers for cancer tumor sub-classification used 
this method. As previously mentioned, data goes through dimension reduction before it is used for model 
fitting. Various hyper parameter tests are performed after splitting 107 dimensions obtained by PCA into 
20 percent test and 80 percent training sets. Grid_Search with a 5-fold cross validation is used to test 
different metrics, like the number of trees in the forest ‘n_estimators': [4,6,16,100], maximum depth of the 
tree 'max_depth': [2,6,8,16,20] and random states 614 and 12345. Some of the parameters tested for 
training and testing accuracy are mentioned in the table below. 

For the final classification we used a random state of 614, n_estimator =16 , max_depth =100. The ROC 
curve is generated by generating the y_score using .predict_proba. However, since the data at hand 
consists of multiclasses, the roc_curve is generated for each class. Label_binarize is used to generate 
y_scores for the y_test values. We observed false positive rates for the ROC curve, and this could be due 
to very few samples for each subtype of NF due to the rarity of the disease. Moreover,  the distinction of 
features between the subtypes of some diseases is difficult as gene counts vary for each person, depending 
on various factors. Obtaining more samples for each subtype will improve the prediction of the 
classification method. 

Table 1: Random Forest Classification - Different Hyper parameters tested for 107 PCA dimensions 

Evaluation 
The classification performance is measured using the metrics module. Different metrics are generated. 
From one perspective, these metrics are functions of four classification scenarios, true/false positive 
(TP/FP) and true/false negative (TN/FN). Accuracy incorporates all four scenarios, whereas precision 
ignores FN and recall ignores FP. The F1-score is the harmonic mean of precision and recall. Finally, the 
receiver operating characteristic curve (ROC curve) only considers TP and FP. 

In our dataset, a TN occurs when the random forest classifier labels a healthy patient as “normal”. 
Conversely, a FN is when a sick patient is classified as healthy. TP and FP are defined similarly. A TP 
classification is when the classifier labels a sick patient with the correct disease and vice versa for FP. In 

 

Hyperparameter 
max_depth 

Hyperparameter 
n_estimators 

 
Random_State 

Train Accuracy Test Accuracy 

5 80 12345 0.99 0.74 

8 100 12345 1.0 0.76 

5 100 12345 0.97 0.78 

16 100 614 1.0 0.86 

6 100 614 0.99 0.80 

8 100 12345 1.0 0.76 



 

general, a good classifier will have a large number of TP and TN and a small number of FP and FN. 
However, for medical diagnoses, avoiding FN is more important than reducing FP. The metrics that 
weigh FN more heavily should be considered first. Thus, metrics in order of importance are: recall, 
accuracy, f1-score, precision, and ROC curve.  

 

Table 2: Evaluation of Random Forest Classification metrics and Comparison with the Study for NF1 subclassification 

 The Roc_Auc score is 0.9505794200797201. 

Conclusion / Discussion 
 
For the RNA seq classification analysis, the NF1 subclassification study [3] focuses on 3 tumor types of 
NF1 and one undefined type and considers two sets of latent variables, Experiment 2** included all latent 
variables and Set 1 included top 40 latent variables. The metrics show that the accuracy of Experiment 1* 
is better.  The current project focuses on 8 types belonging to both NF1 and NF2 and a non tumor type. 
Our problem is twice as hard, given that we have twice as many prediction labels. Even with a harder 
problem, we were able to achieve an accuracy of 86 percent for classifying the tumor types. The current 
dataset size is smaller for tumor classification usually performed, but the task at hand is to sub classify the 
tumors which is an advancing field now. Considering the smaller size of the datasets due to the rarity of 
the disease, we tested the classification method using different PCA dimensions and test scores and tuned 
hyperparameters to design the classification to produce ideal results. Testing this method on more sample 
sizes for each subtype will also enable us to improve on the accuracy. 
 
For the drug association analysis, we were able to obtain the top 10 highly expressed genes for each tumor 
type. Since there was overlap in the most disturbed genes amongst the tumor types, we ended up with 34 
total genes (see figure below). Among these, FN1 and COL1A1 were both highly expressed for all 6 of 
the tumor types. COL1A2 was also highly expressed for most tumor types, but was not in the top 10 of 
Plexiform Neurofibroma and Meningioma tumor types. The gene FN1, or fibronectin 1, encodes 
fibronectin which is involved in cell adhesion and migration processes such as metastasis [15].  COL1A1 
and COL1A2 (collagen type I alpha 1 chain and alpha 2 chain, respectively) encode the alpha chains of 

 

Testing Metrics - Accuracy Metrics -  Precision Metrics - Recall Metrics - F1-Score 

Experim
ent 1* 0.883116883116883 1.0  0.883116883116883 0.934376229830775 

Team20 
0.862745098039215 0.846855622590916 0.862745098039215 0.846984551396315 

Experim
ent 2** 0.753246753246753 1.0 0.753246753246753 0.845461271077034 



 

fibril-forming collagen found in most connective tissue. All three of these genes have been found to be 
candidate prognostic factors for different types of 
cancers [16, 17].  
 
Following the finding of the most highly expressed 
genes, we found drug targets associated with these 
genes. In particular, zinc and copper seemed to be a 
common association for these genes according to the 
drug target explorer data. Zinc is vital in host defenses 
against the initiation and promotion of malignancies, 
and decreased levels have been seen in cancerous cells 
[18]. Copper, an essential element for biological 
processes, has been found to have elevated levels in 
tumor tissue and seems to play an important role in 
inflammation and tumor growth [19].  These two 
elements are the most common among the many 
potential drug targets we found in this study. With 
knowledge of a person’s differentially expressed genes 
and the tumor type, it might help researchers to know 
associations they can specifically target in order to work 
on potential therapeutics. This, in turn, helps pave the 
way for personalized medicine. 
 
In addition to this static visualization, we have 
generated interactive versions to display the specific 
z-score standardized values and target drugs of the top 
34 gene symbols (heatmap.html). Furthermore, we have 
also visualized the workings of PCA in terms of a 
standardized correlation heatmap between the PCA 
components and tumor types. In that heatmap, it can be 
observed that as the number of dimensions increase, the 
correlation values decrease, signifying less important 
dimensions. 

Distribution of Work 

All team members contributed a similar amount of 
effort. 
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