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Abstract

In this paper, we explored the possibilities of applying
a graph neural network (GNN) to produce related YouTube
videos for newly generated videos using link prediction. We
conducted representation learning for our dataset by ap-
plying graph embedding techniques such as node2vec and
spectral embedding. These new inputs from the embeddings
feed to a GNN for calculations. We also investigated a
novel method of combining both SEAL and spectral embed-
ding for link prediction. The results and analyses indicate
an alternative approach for video recommendation tasks,
which is both scalable and accurate. We find that GNNs
can be further explored for building video recommendation
systems.

1. Introduction
On YouTube, hours of content are being uploaded every

second [7]. This generates a rich network of new data that
is being added to the back-end servers at any given time. In
the context of this paper, we will think of this network as a
graph. This is important because each video, which repre-
sents a node, will need to generate directed edges to other
nodes (other videos) in order for there to be recommended
videos. We consider the following problem.

1. Given a set of nodes and a query node, utilize link pre-
diction / GNN to accurately predict related IDs for the
query node.

The results gathered from this project introduce an alter-
native other than deep neural networks for YouTube video
recommendation. Further research into this topic from pre-
vious papers introduced practical applications for social

networks, leading us to believe that the same interpretations
could be said for video based platforms like YouTube and
other various, cutting-edge applications such as cancer de-
tection. We now discuss papers that relate to the research at
hand.

2. Related works
Currently, the approach that YouTube utilizes for recom-

mending videos is detailed by the paper ”Deep Neural Net-
works for YouTube Recommendations” which was written
by Paul Covington, Jay Adams, and Emre Sargin in 2016.
The first layer consists of candidate generation, in which
a deep learning neural network determines hundreds of re-
lated content. The second and final layer consists of utiliz-
ing user activity, video characteristics, and other candidate
traits to further filter the related content by ranking them —
providing dozens of personalized recommendations for the
user based on the video that is viewed [7].

As far as the limits of current practice, this seems to be
a generally accurate and encompassing approach to recom-
mend videos to users. However, one can make the argument
that as the number of videos grows, so does the training
time due to the model being all encompassing. Being able
to think about the collection of videos as a network allows
us to investigate and compare how a graph neural network
and other graph-dependent techniques such as SEAL can
be applied rather than a deep neural network. While not
investigated in this paper, we also believe that a varied im-
plementation of the PageRank algorithm could also lead to
positive results.

Other papers such as The link prediction problem for so-
cial networks by David Liben-Nowell and Jon Kleinberg in
2013 indicate various link prediction algorithms (Adamic-
Adar, Jaccard’s coefficient, common neighbors, etc.) that
have been used, along with performance comparisons. [5]
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We similarly compare these within the paper, and then lastly
compare the results for our GNN specifically for our prob-
lem.

3. Dataset

For this study, we used the data set here [2], which was
crawled in 2007 and 2008. According to Cheng, Dale, and
Liu, they considered all YouTube videos to form a directed
graph with each other. Each video represents a node within
the graph, and for each video, if there is a video b in the
related video list of a video a, then there is a directed edge
from the node a to node b. There can only be 20 connections
at once for our dataset, but the main purpose of us utilizing
this dataset is so that we can quickly generate embeddings
and clustering tasks within the context of utilizing GNNs. In
addition, there are 3 depths of video data labelled for each
of the dates within the data set. We chose the .txt file which
had video data with 3 depths for our analyses, specifically
from the .zip file named 080327.zip. The crawled data is
labelled in the following table as can also be seen in [2]:

video ID string
uploader string

age integer
category string
length int
views int
rate float

ratings float
comments int
related IDs string

Some further analysis on the graph structure shows that
the maximum degree of a node is close to 300 and there are
only a few vertices with degree in the order 102. We did not
exclude any of the variables for our deep learning neural
net. Our output variable is the related IDs field.

4. Approach

We first processed the data from the website by convert-
ing it to an adjacency matrix. In addition, due to computa-
tional constraints, we restricted the amount of connections
that we used to train our model. For each node that we
parsed per line, we grabbed all of its neighbors and repeated
this same step for a limited amount of iterations.

After the adjacency matrix was created, we ran our em-
beddings and link prediction baseline algorithms on it.

In order to effectively utilize GNNs, we first needed to
generate embeddings for the dataset to simplify our down-
stream deep learning neural net classification task. Exclud-
ing the action of utilizing feature learning in a separate
module often leads to low performance and accuracy. We

Figure 1. Visualization of the graph network for the extracted
YouTube dataset.

explored two different methods of graph embeddings, then
compared separate link prediction methods for the problem.

As a novelty, we also combined spectral embedding with
the SEAL (Subgraphs, Embeddings, and Attributes for Link
Prediction) framework to combine subgraph evaluation and
factoring in node separation distance.

4.1. node2vec

We used node2vec, which was introduced by Grover and
Leskovec in 2016 [1]. node2vec is a semi-supervised al-
gorithm that is used for representation learning on graphs,
where continuous feature representations can be learned for
the nodes - resulting in various uses for machine learning
or deep learning tasks [1]. Nodes can be mapped to a low-
dimensional space of features that maximises the likelihood
of preserving network neighbour of node by using a Skip-
gram model to networks to define a objective function over
it’s neighbours. We construct the neighbourhood using ran-
dom walks and compute gradients for our objective func-
tion. Consider a walk (t, v), the use of edge [(x, v) has the
following probabilities. Where p = α(t, x)wxv.

Figure 2. Visualization of the node2vec graph probabilities.

We use SGD for optimisation. This helps our case of
predicting related videos not connected by an edge.

4.2. Spectral embedding

In addition to node2vec, we also utilized spectral embed-
ding, specifically from the scikit-learn library. The process
is as follows: [4]

https://netsg.cs.sfu.ca/youtubedata/


• Data sample is projected on the first eigenvectors of
the graph Laplacian.

• The adjacency matrix is used to compute a graph
Laplacian that has been normalized which has a spec-
trum that can interpret the minimum number of cuts
necessary to split the graph into comparably sized
components.

According to scikit-learn’s documentation, Laplacian
Eigenmaps is the true algorithm that is implemented for
spectral embedding.

4.3. Variational Graph Auto-Encoder

Here we pass the adjacency matrix and features through
an auto-encoder to output a reconstructed adjacency matrix
used for link prediction. We calculate the hidden layer using
a graph convolution layer as follows -

H = ReLU(A ∗ F ∗W1)

where A is the adjacency matrix, F is the node features and
W is the weights of the layer. We then use the hidden layer
and the adjacency matrix to calculate the mean node em-
beddings and the standard deviation using graph convolu-
tion layers as well. Then the node embeddings are sampled
using a normal distribution using the above 2 parameters.

µ = A ∗H ∗Wµ
2

σ = A ∗H ∗Wσ
2

Z ∼ N(µ, σ)

All the above layers use dropout. We finally reconstruct the
adjacency matrix by computing an inner product on Z -

A′ = Z ∗ ZT

The training is done using cross entropy loss and updation
based on Adam optimization. The above implementation is
based on [3].

4.4. Problems anticipated

We anticipated that no embeddings or versions of rep-
resentation learning would lead to a significant decrease in
performance. We expand upon this in further detail in later
sections. The graph auto-encoder takes a very long running
time for adjacency matrix with nodes in the order of 104

on a single CPU. Therefore the later experiments are per-
formed on carefully chosen subgraphs / subset of nodes.

5. Experimentation & Results
After applying the embedding algorithms, we sought

to compare the accuracies and performance of vari-
ous link prediction baseline methods. For this portion
of our project, we utilized the Github repository from
github.com/lucashu1/link-prediction [3], namely making
changes to the link prediction baseline Jupyter notebook by
adding additional algorithms such as RA and adapting the
code to Python 3 and utilizing NetworkX, a library that is
used to create, manipulate, and structure complex networks.
We additionally included a visualization of the node graph
in Figure 1. We also augment the existing SEAL frame-
work code [11] by adding new embedding options, namely,
spectral embedding and a hybrid node2vec and spectral em-
bedding.

5.1. Node neighborhoods (low-order heuristics)

Within the context of link prediction, node
neighborhood-based methods have been gaining pop-
ularity in use due to their simplicity and effectiveness.
We explored the performances and implications between
Adamic-Adar, Jaccard’s coefficient, preferential attach-
ment, and resource allocation. For this portion, we
examined ROC curves and AP (average precision). We first
explain the concepts behind the baseline algorithms that
were used / excluded from this project.

One popular method that we chose to exclude was Com-
mon Neighbors (CN), which is a relatively straightfor-
ward algorithm which scores by determining the number of
neighbors that a node x and a node y have in common. [5]

score(x, y) = |Γ(x) ∩ Γ(y)|

Common Neighbors are often combined with either
computing the ratio of within and inter-cluster common
neighbors of node pairs as was done by Valverde-Rebaza
and Lopes [9] or through utilizing community information
[8]. However, communities and clusters need to be defined
and generated, and there is not enough reliable user data
to construct accurate, disparate groups - thus the reason for
CN’s exclusion.

Jaccard’s coefficient can be computed as follows [5]:

score(x, y) =
|Γ(x) ∩ Γ(y)|
|Γ(x) ∪ Γ(y)|

The idea behind Jaccard’s coefficient is that it measures
the probability that both x and y shares a similar feature f
which is randomly selected. [5].

Adamic-Adar is a common second order heuristic
method for link prediction. The general notion behind this
method is that sparse nodes should be weighted strongly
because an edge between sparse nodes constitute more sig-
nificance as opposed to a node with more edges. [5]

https://github.com/lucashu1/link-prediction
https://github.com/muhanzhang/SEAL


Algorithm Time ROC AP
Adamic-Adar 85.29s 0.652 0.443
Jaccard Coeff. 96.56s 0.586 0.435
Preferential Attachment 41.36s 0.861 0.653
Resource Allocation 76.16s 0.604 0.443
Spectral Clustering 8.91s 0.911 0.846

Table 1. Comparisons of link prediction baseline algorithms and
spectral clustering.

A(x, y) =
∑

z∈N(x)∩N(y)

1

log|N(z)|

, where N(z) is the set of nodes adjacent to z. [5]
Preferential attachment operates on the premise that the

probability that a new edge involves node u is proportional
to |Γ(u)|, which is the current number of neighbors of u.
The equation is as follows:

|Γ(u)| · |Γ(v)|

Lastly, we also analyzed resource allocation, which is
defined as:

score(x, y) =
∑

z∈Γ(x)∩Γ(y)

1

|Γ(z)|

, where Γ(x) denotes the set of neighbors of x . For our
results, refer to Table 1. We list out the comparisons of
link prediction baseline algorithms on our adjacency matrix.
Note that Preferential Attachment has a strong ROC, in ad-
dition to having a much higher AP than the rest of the other
algorithms. Preferential Attachment also evaluates and per-
forms much quicker.

By looking at the visualized graph in Figure 1, we see
that this notion makes sense, as it seems that most of the
randomly sampled videos are closely inter-connected with
each other. This tight inter-connection between the nodes
implies that these nodes often share similar neighbors. As
a result, preferential attachment performs the best since it
relies on the proportion of the current number of neighbors
for the compared node.

5.2. Spectral clustering

In addition to measuring the performance of the link pre-
diction algorithms, we also researched spectral clustering.
We used scikit-learn in order to generate spectral embed-
dings for our adjacency matrix, and then evaluated ROC
and AP. The results can be found at Table 1, though will
be discussed briefly in towards the latter half of this section.

We first talk briefly about the process of spectral cluster-
ing, [6].

• The partitioning algorithm initially builds a Laplacian
matrix L for the graph.

• Find eigenvalues λ and eigenvectors x of L.

• Map vertices to the corresponding components of λ2,

• Group these components by sorting them within a re-
duced 1-dimensional vector, with cluster separations
done via a splitting point.

In all, this spectral clustering performs the best in situ-
ations where points in clusters are infinitely far from each
other. [6]

Overall, spectral clustering seemed to have significantly
better results (0.911 ROC, 0.846 AP) than the other link
prediction baseline algorithms. This was most likely due
to spectral embedding also taking into account distance be-
tween the nodes, not just the connections. As can be seen
in Figure 1, there are clear groups of separated clusters for
the nodes, that are disconnected from many other nodes.

5.3. SEAL (Subgraphs, Embeddings and Attributes
for Link prediction)

The following definition will be useful in the section.
Given a graph G = (V, E), a local enclosing sub-graph for

any two vertices (or nodes) x, y ∈ V is as follows

enclosing sub graph(x, y, h) = Γ(x, h) ∪ Γ(y, h)

where Γ(v, h) denotes the h-hop neighborhood of vertex v.
Formally,

Γ(v, h) = {u|D(u, v) ≤ h}

where D(x, y) = length of shortest path between nodes x
and y.

High-order heuristics often outperform lower order
heuristics, but they come with the cost of being computa-
tionally expensive, as they require the entire network. This
has motivated work to locate a compromise between the
two. It has been shown that local enclosing sub-graphs
can effectively approximate many high-order heuristics. To
be more precise, most high-order heuristics can be classi-
fied as γ-decaying heuristics and, under certain conditions,
these can be approximated using h-order enclosing sub-
graph, with exponentially decreasing approximation error
as h grows.

By training a Graph Neural Network (GNN) to learn a h-
order heuristic from smaller local enclosing sub-graphs, the
SEAL framework[11] is able to exploit the computational
efficiency of low-order heuristics while preserving useful
features and graph structure knowledge gained from high-
order heuristics.



SEAL specifically uses a Deep Convolutional Graph
Neural Net [10]. In addition to the adjacency matrix, A, of
the local sub-graphs, the DCCNN also takes as input, a fea-
ture matrix, X, which contains node labels and optionally
includes node embeddings and attributes. Node labeling
is the only necessary component of this feature matrix, as
it encodes structural information of the sub-graph, by dif-
ferentiating nodes by their functions in the graph. There
are target nodes, which form the links we are trying pre-
dict the existence of. Remaining nodes serve different roles,
depending on their relative positioning to the target nodes.
SEAL uses Double-Radius Node Labeling, which meets the
following criteria:

1. Target nodes x and y have a constant and unique label.

2. Nodes u and v have the same label if and only if they
are equidistant to the targets, i.e. D(x, u) = D(x, v) and
D(u, y) = D(v, y).

The DGCNN architecture feeds these inputs through a
pipeline with three sections: Graph Convolutional Layers,
Sorted Pooling Layers, and a regular Convolutional Neural
Network. Omitting normalization factors for simplification,
a single Graph Convolutional Layer can be described as the
function f(A,X) = NonLinearActivation(AXW ). In-
tuitively, this layer learns network substructure information
by optimizing W, which helps distributes node information
through a local neighborhood. These can be composed to
learn more intricate sub-graph features. The motivation for
the next phase, Sorted Pooling, comes from the inherent
ordering in other common inputs to CNN, such as images
or text. The assumption is that the features extracted from
the Graph Convolutions should be ordered for better per-
formance. For graphs, the ordering is based on the node
structure, which has already been extracted from the matrix
X during the graph convolution. Thus, the Sorted Pooling
Layers can operate solely on the output from the previous
layer. Finally, the CNN with 1D convolutional layers learns
additional patterns and outputs probabilities for link exis-
tence, using a composition of dense and softmax layers.

By default SEAL can toggle the use of node2vec with
10 walks, each of length 80. Since, spectral embedding
is used in spectral clustering from an earlier section, we
also incorporated spectral embedding as an extra embed-
ding option. Our intuitive explanation for this addition is
that node2vec utilizes random walks, unlike the more so-
phisticated Laplacian Eigenmaps technique for spectral em-
bedding. As previously noted, the node2vec uses 10 random
walks of length 80, meaning it captures information for at
most 800 nodes. For perspective, our train and test split had
4423 and 10269 nodes respectively. This is in contrast with
the Laplacian Eigenmaps, which has compressed informa-
tion for all nodes. Thus, we believe spectral embedding will

provide a more complete representation of the sub-graphs
and perform better than node2vec.

As for the empirical results, refer to Table 2, which delin-
eates the ROC and AP scores of running various configura-
tions of SEAL on our data set. We expected the embedding
settings to perform better. As mentioned before, another
assumption was the dominance of spectral embedding over
node2vec.

For the most part, AP scores reflected our hypothe-
ses. One oddity was that the no embedding setting beat
node2vec in AP score and beat all embeddings in ROC
score. We believe this can be attributed to the depth of our
data set, and not to over-fitting.

First, we notice that our data set 080327.zip has a max-
imum depth of 3, i.e. it is a 3-hop network. The GNN
without embeddings may be complex enough to deal with
this relatively small size. To verify this hypothesis, we ran
the same experiments with a deeper 5-hop data set 0222.zip.
With this, the ROC and AP scores match our understanding
and expectations. See Table 3 for the scores.

Second, to verify that the GNN is not over-fitting, we
confirm the testing loss curves are not above the training
loss curves. Since this is the case for both 3-hop and 5-hop
data sets, we only include the plots for the 3-hop data set.



5.4. VGAE - Variational Graph Autoencoders

As the graph is too large and experiments show that cate-
gories are strongly inter-related, we decide to choose top-K
nodes with the highest degree and their neighbours so that
we can still encode the important information in the graph.
For our feature matrix, we only use the following attributes -
’age’, ’length’, ’views’, ’rate’, ’rating’, ’comments’. For our
experiments below we report the ROC-AUC score and the
Average-Precision score which can be defined as the area
under the area under the receiver operating characteristic
curve and the area under the precision-recall curve respec-
tively.
We first run an experiment taking the top 1000 nodes with
highest degree and varying the number of related videos
considered. The results are as follows -

Number of related videos ROC-AUC Score AP Score
20 0.816 0.793
15 0.802 0.777
10 0.761 0.740

We then also decided to take the top 1000 viewed and rated
videos and see if these subsets perform any better. We ob-
served that -

ROC-AUC Score AP Score
Top 1000 viewed videos 0.787 0.775
Top 1000 rated videos 0.827 0.809

We can therefore conclude that we want to use the highly
rated videos and all the twenty related videos to make better
predictions. We can train on more nodes by using a GPU.

6. Conclusion
In conclusion, we were able to show that given a dataset

that could be represented and shown as a network through
the use of the related IDs field, representation learning al-
gorithms / embeddings in combination with a GNN yielded
surprisingly strong results. Based on the results that we
gathered prior to running the GNN, we conclude that the
feature learning process was crucial for high performance
and accuracy. After running the GNNs, we observe that
the features that are used heavily impact the model’s per-
formance. Furthermore, our experimental results suggest
that feeding pre-processed input, in the form of explicitly
computed features, to GNNs gives better performance, as
seen in SEAL. Models incorporating spectral algorithms
also seem to do well with our data set.

The work here demonstrates that given an accurate rep-
resentation of a network, graph neural networks could be a
practical application - especially so for non-linear dimen-
sional data sets.

Future work could also involve the use of other well-
known, high heuristic order algorithms such as PageRank
(used by Google for representation learning on pages on the
WorldWide Web) and the Katz index.

7. Work Division
Our work delegation of work among team members can

be seen at Table 4.
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